Reasoning and Problem Solving Step 2: Area and Perimeter

National Curriculum Objectives:

Mathematics Year 6: (6M7a) Recognise that shapes with the same areas can have different perimeters and vice versa
Mathematics Year 6: (6M7c) Recognise when it is possible to use formulae for the area of shapes

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing Calculate out the area and perimeter of a new shape using given information. Whole numbers only, using known multiplication facts within 12×12.
Expected Calculate the area and perimeter of a new shape using given information.
Includes up to 2-digit by 2-digit whole numbers and some conversion between units of measure. The formula for finding area and perimeter is used.
Greater Depth Calculate the area and perimeter of a new shape using given information. Includes some conversion between units of measure and decimal numbers up to 2 dp . The formula for finding area and perimeter is used.

Questions 2, 5 and 8 (Problem Solving)
Developing Calculate the largest and smallest areas possible using the information given. Whole numbers only, using known multiplication facts within 12×12.
Expected Calculate the largest and smallest areas possible using the information given. Includes up to 2-digit by 2-digit whole numbers and some conversion between units of measure. The formula for finding area and perimeter is used.
Greater Depth Calculate the largest and smallest areas possible using the information given. Includes some conversion between units of measure and decimal numbers up to 2 dp. The formula for finding area and perimeter is used.

Questions 3,6 and 9 (Reasoning)
Developing Children explain whether they agree or disagree with a statement. Whole numbers only, using known multiplication facts within 12×12.
Expected Children explain whether they agree or disagree with a statement. Includes up to 2 -digit by 2-digit whole numbers and some conversion between units of measure. The formula for finding area and perimeter is used.
Greater Depth Children explain whether they agree or disagree with a statement. Includes some conversion between units of measure and decimal numbers up to 2 dp . The formula for finding area and perimeter is used.

More Year 6 Perimeter, Area and Volume resources.

Did you like this resource? Don't forget to review it on our website.

Area and Perimeter

1a. Eddie draws two equal rectangles.

He puts them together to make a new shape.

What is the area and perimeter of the new shape?

Not to scale

2a. A shape has a perimeter of 18 cm .
Perimeter $=18 \mathrm{~cm}$

What is the largest area the shape could have?

What is the smallest area the shape could have?

Not to scale
3a. Rosa says,

Squares have the same area and perimeter because you multiply by 4.

1b. Sadie draws two equal rectangles.

She puts them together to make a new shape.

W
Not to scale
2 b . A shape has a perimeter of 24 cm .

What is the largest area the shape could have?

What is the smallest area the shape could have?
W

Not to scale
3b. Jacob says,

Rectangles have the same area and perimeter because you just multiply the length by width.

Do you agree? Prove it.

4a. Freddy draws two equal rectangles.

He puts them together to make a new shape.

What is the largest area the shape could have?

What is the smallest area the shape could have?

6a. Cally says,

A square can have the same area and perimeter.

4b. Hayley draws two equal rectangles.

She puts them together to make a new shape.

Using the correct formulae, find the area and perimeter of the new shape.

Not to scale
5 b. A shape has a perimeter of 68 cm .

What is the largest area the shape could have?

What is the smallest area the shape could have?

Not to scale

6b. Brendan says,

A rectangle will always have a different area and perimeter.

Do you agree? Prove it.

7a. Hamza draws two equal rectangles.

He puts them together to make a new shape.

Using the correct formulae, find the area and perimeter of the new shape.

Not to scale

8 a . A shape has a perimeter of 80.5 cm .
Perimeter $=80.5 \mathrm{~cm}$

What is the largest area the shape could have?

What is the smallest area the shape could have?

Not to scale
9a. Suzie says,

If a square has an area that is a decimal, then its perimeter will always be a decimal too.

7b. Joanna draws two equal rectangles.

She puts them together to make a new shape.

Using the correct

 formulae, find the area and perimeter of the new shape.

Not to scale
8 b. A shape has a perimeter of 75 cm .

What is the largest area the shape could have?

What is the smallest area the shape could have?

Not to scale

9b. Kevin says,

Do you agree? Prove it.

Reasoning and Problem Solving Area and Perimeter

Reasoning and Problem Solving Area and Perimeter

Developing

1a. Area $=39 \mathrm{~cm}^{2}$, Perimeter $=32 \mathrm{~cm}$
2a. Largest area $=4 \mathrm{~cm} \times 5 \mathrm{~cm}=20 \mathrm{~cm}^{2}$ Smallest area $=8 \mathrm{~cm} \times 1 \mathrm{~cm}=8 \mathrm{~cm}^{2}$
3a. Disagree; to find the area you multiply length by width, to find the perimeter, you add all the sides together. For example: in a square that measures $6 \mathrm{~cm} \times 6 \mathrm{~cm}$, the area is $36 \mathrm{~cm}^{2}$, but the perimeter is 24 cm .

Expected

4 a . Area $=57 \mathrm{~cm}^{2}$, Perimeter $=44 \mathrm{~cm}$
$5 a$. Largest area $=20 \mathrm{~cm} \times 21 \mathrm{~cm}=420 \mathrm{~cm}^{2}$
Smallest area $=40 \mathrm{~cm} \times 1 \mathrm{~cm}=40 \mathrm{~cm}^{2}$
$6 a$. Agree; some squares have an equal area and perimeter (for example, $4 \mathrm{~cm} x$ 4 cm), however, others do not (such as $5 \mathrm{~cm} \times 5 \mathrm{~cm}$).

Greater Depth

7a. Area $=69 \mathrm{~cm}^{2}$, Perimeter $=52 \mathrm{~cm}$
8 a. Largest area $=20 \mathrm{~cm} \times 20.25 \mathrm{~cm}=$ $405 \mathrm{~cm}^{2}$ (Accept this answer, however, if children wish to take this further, other decimals can produce larger areas such as $20.1 \mathrm{~cm} \times 20.15 \mathrm{~cm}=405.015$. This may require a calculator).
Smallest area $=40 \mathrm{~cm} \times 0.25 \mathrm{~cm}=10 \mathrm{~cm}^{2}$
9a. Disagree; if the area of a square is a decimal number, it does not mean that the perimeter will be a decimal as well. For example; Perimeter $=4.5 \mathrm{~cm}+4.5 \mathrm{~cm}+$ $4.5 \mathrm{~cm}+4.5 \mathrm{~cm}=18 \mathrm{~cm}$. Area $=4.5 \times 4.5=20.25 \mathrm{~cm}^{2}$.

Developing

$$
\begin{aligned}
& \text { 1b. Area }=56 \mathrm{~cm}^{2}, \text { Perimeter }=36 \mathrm{~cm} \\
& \text { 2b. Largest area }=6 \mathrm{~cm} \times 6 \mathrm{~cm}=36 \mathrm{~cm}^{2} \\
& \text { Smallest area }=11 \mathrm{~cm} \times 1 \mathrm{~cm}=11 \mathrm{~cm}^{2}
\end{aligned}
$$

3b. Disagree; to find the area, you multiply length by width, to find the perimeter you add all the sides together. For example: in a rectangle that measures $3 \mathrm{~cm} \times 4 \mathrm{~cm}$, the area is $12 \mathrm{~cm}^{2}$, but the perimeter is 14 cm .

Expected

4 b . Area $=44 \mathrm{~cm}^{2}$, Perimeter $=48 \mathrm{~cm}$
5b. Largest area $=17 \mathrm{~cm} \times 17 \mathrm{~cm}=289 \mathrm{~cm}^{2}$
Smallest area $=33 \mathrm{~cm} \times 1 \mathrm{~cm}=33 \mathrm{~cm}^{2}$
6b. Disagree; some rectangles have an equal area and perimeter (for example, $3 \mathrm{~cm} \times 6 \mathrm{~cm}$), however others do not (such as $7 \mathrm{~cm} \times 5 \mathrm{~cm}$).

Greater Depth

7b. Area $=85.75 \mathrm{~cm}^{2}$, Perimeter $=56 \mathrm{~cm}$
8 b . Largest area $=18.5 \mathrm{~cm} \times 19 \mathrm{~cm}=$ $351.5 \mathrm{~cm}^{2}$
Smallest area $=37 \mathrm{~cm} \times 0.5 \mathrm{~cm}=18.5 \mathrm{~cm}^{2}$ 9 b. Disagree; although a rectangle may have a perimeter with a decimal number, it is still possible for the area to be a whole number. For example; Perimeter $=1.2 \mathrm{~cm}+$ $5 \mathrm{~cm}+1.2 \mathrm{~cm}+5 \mathrm{~cm}=12.4 \mathrm{~cm}$.
Area $=1.2 \times 5=6 \mathrm{~cm}^{2}$.

