
1) a) 10 234

	2	3	8
×		4	3
	7	1	4
	1	2	
9		2 2	0
9	5 3	2	

b) 41 172

		5	6	4	
	×		7	3	
	1	6	9	2	(564 × 3)
3	9	4 2	8	0	(564 × 70)
4	1	1	7	2	
1	1	1	1		-

c) 29 960

(856 × 5)

2) a) 34 558cm²

b) 22 230cm²

c) 73 584cm²

1) a) Laila has not used zero as a placeholder when multiplying 2 x 40. She has recorded the answer as 8 rather than 80.

 (238×3)

 (238×40)

		5	2	2
	×		4	4
	2	0	8	8
2	0	8	8	0
2	2	9	6	8
		$\overline{}$		

(522 x 4)

(522 x 40)

 b) Laila has not recorded the regrouped thousands digit following 50 x 20.

		6	5	3
	×		2	3
	1	9	5	9
1	3	0	6	0
1	5	0	1	9

c) When Laila added the two products together to find the total, she added all the regrouped digits as well.

		2	3	7
	×		6	2
		4	7	4
1	4 2	2	2	0
	4	6	9	4

(522 x 4)

(522 x 40)

2) a) 20 536

b) 20 328

c) 208

1)			4	2	7
		×		3	2
			8	5	4
	1	2	8	1	0
	1	3	6	6	4

		6	5	3
	×		4	6
	3	9	1	8
2	6	1	2	0
3	0	0	3	8

2) Children may first notice that B must be S, because it's the only number that multiplies with another number (C) to make a product that also ends in a S. C could therefore either be 3 (3 × S = 15) or 7 (7 × S = 5).

Children may then notice that C + D = S, so C and D must be Q or Q. C must therefore be Q.

C=3, so $A\times 3=D$. If A were 2, this would give 6, adding the regrouped I to make D=7. However, in the hundreds column, $A\times C=2\times 3=6$. This does not work with the letters for the first product. Therefore, A must be 7 and D must be 2.

		7	7	5
	×		3	3
	2	3	2	5
2	3	2	5	0
2	5	5	7	5

Number	Letter
2	D
3	С
5	В
7	A